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A new and evolving area of research termed
molecular epidemiology attempts to merge
sophisticated and highly sensitive laboratory
methods (many of them developed during
the recent revolution in molecular biology)
with analytical epidemiologic methods.
Molecular epidemiology bridges basic
research in molecular biology and studies of
human cancer causation by combining labo-
ratory measurement of internal dose, biologi-
cally effective dose, biologic effects, and the
influence of individual susceptibility with epi-
demiologic methodologies (1). The most
common view is that the approach represents
a natural convergence of molecular biology
and epidemiology (2).

The number of biomarkers available for
evaluating genetic and cancer risk in humans
is quite large. Their utility -for human bio-
monitoring is suggested by the well-known
paradigm of environmentally induced cancer,
which represents end points for assessing the
entire spectrum of human-genotoxicant
interactions (3). These biomarkers begin
with exposure and include absorption,
metabolism, distribution, critical target inter-
action (i.e., DNA damage and repair),
genetic changes, and finally, disease, which is
the province of traditional epidemiology.
The development of biomarkers has given
rise to the field of molecular epidemiology,
which uses these biomarkers rather than dis-
ease to assess the risk of environmental
exposure (4,5).

The paradigm of environmental cancer
starts with exposure. A large number of bio-
markers are now available, but to evaluate
their sensitivity and to interpret the results
obtained, data on exposure are needed.
Previously, exposure data were usually not
published in studies using various biomarkers.

The field of molecular epidemiology is
developing rapidly. This review covers papers
published from 1997 to 1999. The data can
be used to evaluate the advantages or disad-
vantages of different biomarkers used in the
studies of occupationally and environmentally
exposed population groups.

Biomarkers evaluated in this review were
selected according to the following basic
scheme: biomarkers of exposure metabolites
in urine, DNA adducts, protein adducts, and
Comet assay parameters; biomarkers of effect-
chromosomal aberrations (CAs), sister chro-
matid exchanges (SCEs), micronuclei (MN),
mutations in the hypoxanthine-guanine phos-
phoribosyltransferase (HPRT) gene, and the
activation of oncogenes coding for p53 or p21
proteins as measured by protein levels.

Occupational Exposure to
Mutagens and Carcinogens
Table 1 summarizes the effect of exposure
and genotypes on biomarkers of exposure and
the effects in occupationally exposed groups.

Several studies on coke oven workers have
used personal monitoring. In a group of coke
oven workers exposed to carcinogenic

polycyclic aromatic hydrocarbons (PAHs)
from 0.6 to 547 ,ug/m3 and to benzo[a]-
pyrene (B[a]P) from 2 to 62,107 ng/m3,
respectively, Binkova' et al. (6) observed a
positive correlation between DNA adducts in
total white blood cells (WBCs) and/or lym-
phocytes and carcinogenic PAHs and/or
B[a]P in the inhaled air at the individual
level. A similar relationship in the same
groups was also observed by Kalina et al. (7)
who analyzed CAs, SCEs, and cells carrying a
high frequency of SCEs (HFCs). Using the
Comet assay for lymphocytes, Mrackovai et
al. found no effect (8). In a study of coke
oven workers in China (9) and Taiwan (10),
urinary 1-hydroxypyrene (1-OH-pyrene) dif-
fered significantly according to exposure to
PAHs, but no increase of DNA adduct levels
between exposed and control groups was
observed (9). Personal exposures to B[a]P in
this study were 2 or 3 times higher than in
the former study (6). Kure et al. (11) ana-
lyzed benzo[a]pyrene diolepoxide (BPDE)-
albumin adducts in coke oven workers. They
found no difference between exposed and
control groups. The concentration of B[a]P
in the workers' environment was approxi-
mately only one-third to one-half the expo-
sure in the first study (6). Zanesi et al. (12)
measured HPRT mutant frequency and ana-
lyzed mutational spectra in the lymphocyte
mutants. The gene alterations observed were
similar in exposed and nonexposed subjects.

Pendzich et al. (13) also studied the
effect of exposure on SCEs and HFCs in
coke oven workers. SCEs, as well as HFCs,
were significantly higher in coke oven work-
ers than in controls from the same region.
The winter samples had higher SCEs and
HFCs than the summer samples. Differences
between smokers and nonsmokers were
observed, particularly in winter samples.

Analysis of aromatic DNA adducts in
foundry workers and controls showed that
the 32P-postlabeling method was able to
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detect an increase of DNA adducts in
leukocytes when exposure to B[a]P in the air
exceeded 5 ng/m3 (14).

Coke oven and foundry workers certainly
represent a group of subjects highly exposed
to PAHs (6-13). Using biomarkers of expo-
sure such as DNA adducts (6,13) and 1-OH-
pyrene (9), significantly higher levels of
PAHs were seen in these workers compared
with levels in control groups. However,
Binkovai et al. (6) evaluated the efficiency of
DNA adduct formation per unit of exposure
and found that the efficiency decreased
remarkably with increasing exposure. An
increase of exposure to PAHs of approxi-
mately 40-fold resulted in only a 50%
increase of bulky aromatic DNA adducts in
lymphocytes. Similar results showing a non-
linear dose response were described by Lewtas
et al. (15) for environmentally and occupa-
tionally exposed subjects and by Van
Schooten et al. (16) for smokers. This obser-
vation needs further investigation, but it
could be caused by the saturation of meta-
bolic processes, a lack of specificity of the
assay in the control population, or a lack of
transport of the activated genotoxins to the
tissue under study (17).

Young workers in engine repair workshops
are exposed to PAHs from engine exhaust and
used engine oil. SCE and MN frequencies
were found to be higher for exposed subjects
(p < 0.05). The levels of 1-OH-pyrene were
higher not only in the exposed group com-
pared with controls (p < 0.001) but also in
exposed nonsmokers compared with exposed
smokers (p < 0.05) (18).

Workers employed in road-paving
operations are exposed to bitumen fumes,
which consist mainly of PAHs and their
derivatives. Exposure to PAHs has been
assessed by 1-OH-pyrene excretion in the
urine: 0.78 ± 0.46 imol/mol creatinine in
exposed workers versus 0.52 ± 0.44
pmol/mol in controls. Exposure to bitumen
fumes significantly increased SCEs (p < 0.05)
and MN (p < 0.001) in exposed workers
compared with controls (19).
A possible effect of PAHs was studied in

U.S. soldiers in Kuwait who were exposed to
oil-well fires. The PAH-DNA adducts were
measured in blood cells by immunoassay.
Low ambient PAH levels were observed, and
no increases of DNA adducts or 1-OH-
pyrene in urine were found (20).

Gas chromatography-mass spectrometry
(GC-MS) was used to analyze hemoglobin
adducts formed by nitro-PAHs in human
blood samples of a population of bus garage
workers exposed to diesel exhaust. When
blood samples from bus garage workers were
compared with those from urban area con-
trols, no significant differences in hemoglobin
adduct levels were observed (21).

The genotoxicity of a low level of
hydrocarbons and jet fuel derivatives was
studied in airport workers. The levels of ben-
zene, toluene, and xylene at the airport were
approximately one-tenth the levels of those at
petrol stations (22). Analyzing SCEs, MN,
Comet assay parameters, and the induction of
ras p21 protein levels in plasma, no effect of
this low exposure to hydrocarbons was
observed. Smoking did not significantly affect
the Comet assay values. The study suggests
that benzene at very low doses (0.10 ± 0.005
mg/m3) does not induce detectable genetic
damage as measured by conventional
cytogenetic assays (23).

Parry et al. (24) analyzed the effect of
vehicle exhaust fumes on motor mechanics,
traffic policemen, and motorcyclists. Controls
were office workers. Using diffusion tubes,
the exposure to volatile organic compounds
(VOCs) was determined. No increase of
micronuclei was observed when the total
VOC was, on average, 363 ppb in the
exposed group versus 138 ppb in controls
(exposure to benzene 0.041 mg/m3 for the
exposed group; 0.016 mg/m3 in controls).

Hartmann et al. (25) analyzed workers
exposed to environmental pollutants at a waste
disposal site. Using a cytogenetic test and the
Comet assay, they observed an increase of CAs
and Comet assay parameters but not of SCEs.
Expected exposure was to various hydrocar-
bons (e.g., acrylonitrile, benzene, dinitro-
toluene, epichlorohydrine, vinylchloride).

Gasoline station attendants represent a
group of persons exposed to benzene. Carere
et al. (26), using fluorescence in situ
hybridization (FISH) with centromeric
probes for chromosomes 7, 11, 18, and X,
observed no exposure-related hyperploidy or
micronucleus formation for a group exposed
to benzene concentrations of 0.32 mg/mi3.
Applying the Comet assay to the same
groups, Andreoli et al. (27) found that tail
moment values were significantly higher in
exposed groups than in unexposed groups
(27). Bukvic et al. (28) found no effect on
SCEs or HFCs of exposure to benzene at
concentrations of 0.23 mg/m3. They only
observed an exposure-related increase in the
frequency of micronuclei. In another group
of service station attendants exposed to 0.19
mg/m3 benzene, no differences in SCE values
were observed among exposed and control
groups (22).

Exposure to benzene has been followed in
several groups, as benzene may be used as a
model for biomarkers of leukemia risk (29).
In Shanghai, China, two groups of workers
were studied, one with a lower exposure (50 ±
31 mg/m3) and one with a higher exposure
(380 ± 253 mg/m3) to benzene versus controls
exposed to 0.05 ± 0.06 mg/m3. Hemoglobin
and albumin adducts significantly correlated

with exposure (30). Both these adducts
therefore may be used as biomarkers of expo-
sure to high levels of benzene. Smith et al.
(31) used painting probes for chromosomes 8
and 21. They observed an increase in the
hyperdiploidy of chromosomes 8 and 21 and
translocations between chromosomes 8 and
21 with exposure to benzene concentrations
higher than 380 mg/m3. Zhang et al. (32)
used FISH in the same group to determine
specific aberrations in chromosomes 1, 5 and
7. Exposure to benzene was associated with
increases in the rates of monosomy 5 and 7
and with increases in -the trisomy and tetra-
somy frequencies of all three chromosomes.
This result demonstrates that the leukemia-
specific changes in chromosomes 5, and 7 can
be detected by FISH in the peripheral blood
of healthy exposed workers.

Surralles et al. (33) used FISH to determine
MN in lymphocytes and buccal cells as well
as numerical abnormalities of chromosome 9
in buccal cells in a population occupationally
exposed to approximately 3.5 mg/m3 ben-
zene in an Estonian petrochemical plant. No
increases in the frequency of total micro-
nuclei or chromosome 9 numerical abnor-
malities were detected in either buccal cells
or lymphocytes.

Pitarque et al. (34) used the Comet assay
to evaluate the exposure to organic solvents
such as acetone, gasoline and toluene in shoe
workers. The occupational exposure to organic
solvents (acetone, 382-927 mg/m3; gasoline,
283-723 mg/m3; toluene, 96-412 mg/m3)
did not affect the Comet assay values (34).

Major et al. (35) followed a group of
viscose rayon plant workers exposed to
acrylonitrile (0.3-17.6 mg/m3 in ambient
air) and dimethylformamide (0.6-23
mg/m3). In exposed workers, increased levels
of CAs, SCEs, and HFCs, as well as
ultraviolet-induced unscheduled DNA syn-
thesis, were observed (35). In furniture
workers exposed to styrene, exposure at an
ambient level of 128 mg/m3 of styrene
increased SCE frequency but not MN (36).

Exposure to 1,3-butadiene (BD) at a level
of 0.53 mg/m3 in a monomer production
unit increased C-As, SCEs, and HFCs in the
exposed group compared with levels among
controls but had no significant effect on the
formation ofMN or Comet assay parameters
(37). Zhao et al. (38), in a subgroup of the
same workers, were able to demonstrate an
increase of N-1-(2,4,3-trihydroxybutyl)ade-
nine adducts induced by BD. Hallberg et al.
(39) observed no differences in the frequency
ofCAs between the exposed group with occu-
pational exposure to 5 mg/m3 BD and con-
trols. Using a challenge assay, they postulated
that BD could cause DNA repair defects.

Exposure to epichlorohydrin (ECH)
(0.4-0.9 mg/m3) increased SCEs and HFCs

Environmental Health Perspectives * Vol 108, Supplement 1 * March 200060
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in the exposed group compared with controls.
These concentrations of ECH did not
increase hemoglobin adducts, HPRT
mutants, or MN (40).

Another group studied was farmers
exposed to a mixture of pesticides. Sometimes
it is difficult to identify individual pesticides
and to properly evaluate the exposure to
them. Au et al. (41), analyzing the difference
between farmers and controls, did not
observe any increase in CAs by either the
standard assay or FISH; differences were
apparent, however, using a challenge assay.
Lebailly et al. (42) observed effects of spray-
ing selected pesticides on several groups using
the Comet assay. DNA damage in leukocytes
was analyzed during the beginning, interme-
diate, and final periods of intense spraying
activity. DNA damage was significantly dif-
ferent among groups; no concurrent control
was used. When the leukocytes of farmers
were analyzed after a 1-day spraying period, a
significant effect was observed only in sub-
jects exposed to a fungicide (chloro-
thalonil)-insecticide mixture (43).

In greenhouse workers exposed to
mixtures of pesticides, higher MN frequen-
cies were detected in a subset of workers with
work histories of extensive pesticide spraying
compared with other exposed subjects and
controls (44). In another group from Italy,
DNA damage was analyzed by a 32P-postla-
beling assay. The DNA adducts were signifi-
cantly higher in floroculturists compared with
controls (p < 0.001). These findings support
the use of the 32P-postlabeling assay in agri-
cultural studies (45). In sprayers involved in a
Mediterranean fruit fly eradication program,
Titenko-Holland et al. (46), using a
micronucleus assay, observed no effect of
malathion exposure in lymphocytes.

In phosphate fertilizer factories, workers
are exposed mostly to fluorides. The frequen-
cies of CAs and MN were higher in workers
than in controls (47).

Welders are exposed to chromium and
nickel. Exposure to these metals was mea-
sured in blood samples. With a chromium
concentration in erythrocytes of 4.3 ± 7.0
mg/L and a nickel concentration in blood of
4.6 ± 1.4 mg/L, increased SCEs were
observed in welders compared with controls
(p = 0.04) (48).

The genotoxic effect of occupational
exposure to cytostatics was investigated in
three studies. Rubes et al. (49), using FISH
with painting probes specific for chromo-
somes 1 and 4, found significant differences
in the number of translocations (p < 0.01), as
well as in CAs determined by conventional
methods, between an exposed group and
controls (p < 0.05). Burgaz et al. (50)
observed in a group of nurses an increase of
MN frequencies in peripheral lymphocytes

and in buccal epithelial cells. Using the
Comet assay, Undeger et al. (51) found that
DNA damage was greater in nurses than in
controls and that this effect was smaller in
nurses using individual safety protection
during their work.

Sardas et al. (52) used the Comet assay to
detect DNA damage in the lymphocytes of
hospital operating personnel who were
exposed to anesthetic gases. The operating
room personnel had substantially greater
damage to their lymphocytes than did con-
trols. The extent of damage in exposed smok-
ers was significantly higher than that in
exposed nonsmokers.

An interesting exposure was analyzed in
cigarette factory workers exposed to tobacco
dust (53). The lymphocyte DNA damage
analyzed by the Comet assay showed that the
exposed workers had a larger tail moment
than controls (p < 0.05) and that smokers had
significantly larger tail moments than non-
smokers. This study suggests a synergistic
effect of tobacco dust exposure and smoking
on DNA damage.

It is believed that airline pilots and crew
members may be affected by ionizing radia-
tion of cosmic origin. Romano et al. (54)
observed an increase of dicentric and ring
chromosomes in the peripheral blood lym-
phocytes of flight personnel. In another
study with flight engineers, an increase of
oxidative damage as determined by 8-oxo-
7,8-dihydro-2'-deoxyguanosine (8-oxodG)
was observed. Chromosomal aberrations,
micronuclei, and HPRT mutations were not
significantly increased (55).

In a limited number of the occupational
studies mentioned above, biomarkers of sus-
ceptibility for evaluating the effect of geno-
types on biomarkers of exposure and effects
were also analyzed (Table 1).

In the group of Czech and Slovak coke
oven workers with elevated exposure to PAHs,
the effects of GSTM1 and NAT2 polymor-
phisms on DNA adducts (6), CAs, SCEs (7),
and Comet assay parameters (8) were studied.
No effect of either genotype was observed on
any of these biomarkers. Pan et al. (9) ana-
lyzed polymorphisms of CYPIA] Ile/Val in
exon 7 and GSTMI polymorphisms.
CYPIAJ and GSTM1 genotypes were unre-
lated to 1-OH-pyrene levels. DNA adducts
correlated with CYPlAI IlelVal or Val/Val
polymorphisms, but no effect of the GSTMI
null polymorphism on the DNA adduct levels
was observed. No effect of either genotype was
observed on serum p53 protein levels. Wu et
al. (10) showed the effect of CYPIAI MspI
genotype polymorphism on 1-OH-pyrene
concentrations in urine. Subjects with the
homozygous variant genotype had a two-fold
higher postshift of 1-OH-pyrene levels. This
indicates that a CYPIAJ MspI variant

genotype can modify the metabolism of PAHs
in coke oven workers.

In the group of foundry workers studied
by Hemminki et al. (14) neither GSTMI or
CYPlAl genotypes affected the level of
DNA adducts determined by 32P-postlabel-
ing. The authors suggested that the effect of
genotypes in their study should not be used
as negative evidence because the exposure to
PAHs was low.

In another group of soldiers exposed to
PAHs from oil well fires, the effect of
CYPlAI (MspI) and GSTMI and GSTT1
polymorphisms were analyzed. No increase in
urinary 1-OH-pyrene level or DNA adducts
by immunoassay or by 32P-postlabeling was
observed in any of these genotypes (20).

No effect of GSTMI or GSTTI polymor-
phisms was observed on Comet assay parame-
ters in female shoe workers exposed to
toluene and other organic solvents (34).

Au et al. (41) analyzed the effect of
CYP2EI, GSTMI, GSTTI, and paraoxonase
(PON) polymorphisms on CAs induced by
mixed pesticides. No effect of any of these
genotypes on CAs was observed; however,
CYP2A1, GSTMI, and PON increased chro-
mosomal aberrations using a challenge assay.
The farmers who had unfavorable metaboliz-
ing alleles were more susceptible to the geno-
toxic effects of pesticides. Falck et al. (44)
observed no effect of GSTMI, GSTT1, or
NAT2 genotypes on MN frequency in pesti-
cide-exposed greenhouse workers. In another
study by Scarpato et al. (56) with greenhouse
workers, a lack of GSTMI did not increase
chromosomal aberrations in pesticide-exposed
subjects, except in the subset of smokers.
Chromosomal aberrations were also increased
in individuals who carried simultaneously
GSTMI null and GS7T1 null genotypes.

Environmental Exposure to
Mutagens and Carcinogens
Table 2 summarizes the effect of exposure
and genotypes on biomarkers of exposure and
effect on environmentally exposed popula-
tions. Bus drivers and postal workers have
been used as model groups for air pollution in
big cities. A large study was organized in
Denmark analyzing several end points and
exposure to PAHs (57). The exposure was
evaluated by determination of 1-OH-pyrene
in urine and exposure dose by DNA and pro-
tein adducts. Significantly higher levels of
bulky aromatic DNA adducts were observed
in bus drivers working in the central part of
Copenhagen than in bus drivers from rural or
suburban areas (p = 0.012). In contrast, sig-
nificantly higher levels of malondialdehyde in
plasma and PAH-albumin adducts were
observed in a suburban group (p = 0.016)
that was used as a control group because of
lower exposure to ambient air pollutants. The
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DNA adduct levels in postal workers were
similar to the levels in suburban bus drivers.
Autrup et al. (57) recommended analyzing
oxidative DNA damage as a biomarker of air
pollution caused predominantly by diesel
exhaust partides. In a subsample of bus drivers
and postal workers, personal monitors for eval-
uation of exposure to naphthalene and fenan-
threne in inhaled air were used (58). In the
same groups the frequency of CAs in periph-
eral lymphocytes was determined. There was
no significant difference between bus drivers
and postal workers (59). The oxidative DNA
damage in another subset of bus drivers was
determined by urinary excretion of 8-oxodG
(60). A comparison of drivers in the city center
and in rural and suburban areas of
Copenhagen found a significant difference in
8-oxodG excretion (p < 0.005). This increased
excretion of 8-oxodG suggests that exposure to
ambient air pollution may cause oxidative
damage to DNA (60).

In Mexico City, Mexico, the specific air
pollution problem is related to the exposure of
a complex mixture accompanied by a high
level of ozone. Calderon-Garciduenas et al.
(61) examined DNA damage in the nasal res-
piratory epithelium of children. In the nasal
cells 8-hydro-2'-deoxyguanosine (8-OHdG)
and Comet assay parameters were analyzed.
They observed a significant increase of single-
strand breaks as well as 8-OHdG levels in
exposed children compared to those in con-
trols (p < 0.05). The combination of 8-OHdG
and Comet assay parameters is thought to be
useful for monitoring oxidative DNA damage
in populations exposed to air pollution. Using
the Comet assay, Valverde et al. (62) analyzed
DNA damage in leukocytes and buccal and
nasal epithelial cells in samples from young
adults living in Mexico City. Increased tail
image length was observed in blood leukocytes
(p < 0.05) and nasal epithelial cells (p < 0.001)
in young adults from the southern part of the
city who were exposed to high levels of ozone
compared with young adults from the north-
ern part who were exposed to hydrocarbons
and particles. These differences were not
observed in buccal epithelial cells.

The seasonal effect of exposure to PAHs
adsorbed to air particles was assessed by mea-
suring personal exposure to pyrene, urinary
excretion of 1-OH-pyrene, and hemoglobin
BPDE adducts in Milan, Italy (63). There
were no significant differences in the urinary
levels of 1-OH-pyrene between summer and
winter samples. Hemoglobin adducts were
higher in winter than in summer, but the
difference between seasons was not significant.

Vyskocil et al. (64) used l-OH-pyrene in
urine to evaluate exposure to PAHs in two
areas with different levels of air pollution
during the winter and summer. They did not
observe any relationship between pyrene

concentration in the air and 1-OH-pyrene
levels in urine.

The biomarkers in pregnancy outcome
studies were also used in projects analyzing
the impact of air pollution on populations in
Northern Bohemia in the Czech Republic
and Silesia in Poland. A study of the effect of
environmental pollution on placenta DNA
adducts was conducted in the Czech Republic
(65). Air pollutant levels were evaluated from
continuous ambient air monitoring. The total
DNA adduct levels indicated significant dif-
ferences between polluted and control regions
(p = 0.04). Higher DNA adduct levels were
found in smoking mothers than in nonsmok-
ing mothers. Cytogenetic analysis of periph-
eral lymphocytes from venous and cord blood
of pregnant women revealed no differences
among women from different regions.
Multiple regression analysis indicated that
DNA adduct levels in placentas were affected
by the concentration of PAHs during the last
month of pregnancy, active and passive
smoking, or plasma vitamin C levels. DNA
adducts were also significantly increased in
the placentas of newborns with intrauterine
growth retardation (p < 0.005) (66).
Intrauterine growth redardation is thought to
be induced by PM1o (particulate matter < 10
pm) as early as the first month of pregnancy
(67). The DNA adduct data in placentas are
complementary with in vitro studies of DNA
binding activity and embryotoxicity (68) that
demonstrated the genotoxic and embryotoxic
potential of organic extracts of PM1o.

The impact of environmental air pollution
(PM1o) on hospitalized pregnant women in
the same regions was also analyzed using the
Comet assay. In this study, 322 pregnancies
from a polluted district and 220 pregnancies
from a control district were compared for
detection of DNA damage in peripheral
WBCs. The results obtained for mothers and
their children did not differ between those liv-
ing in polluted and control districts. No effects
of prematurity, ethnicity, or smoking were
observed for any of the Comet parameters (69).

Whyatt et al. (70) studied the relation-
ship between ambient air pollution and DNA
adducts in maternal and cord WBCs in
mothers and newborns from Cracow, Poland.
Splitting this group according to low,
medium, and high air pollution levels
(PM1O), there was a dose-related increase of
DNA adduct levels with ambient air pollu-
tion and the mothers' places of residence
(p < 0.05). When the same cohort was com-
pared with another group with lower air pol-
lution exposure, no effect was seen on
PAH-DNA adducts in the placenta (71).

Perera et al. (72) showed in the studies in
Poland that ambient air pollution was signifi-
cantly associated (p < 0.05) with the levels of
PAH-DNA adducts in white blood cells

from both the maternal and infant cohorts.
Newborns with elevated DNA adducts in
cord blood had significantly decreased birth
length, birth weight, and head circumference
compared to newborns with lower DNA
adduct levels detected in the cord blood.

Studies from both Poland and the Czech
Republic indicate a relationship between
ambient air pollution and an increase in
DNA adduct levels in the DNA from mater-
nal and cord blood and/or from placenta as
well as the relationship of these biomarkers to
the development of newborns.
DNA adducts were also analyzed in the

placenta of women environmentally exposed
to polychlorinated biphenyls (PCBs) and
polychlorinated dibenzofurans (PCDFs) in
Canada. DNA adducts were increased in the
group of Inuit women with higher
organochlorine exposure (probably due to
consumption of species from the marine food
chain) compared with those in a reference
group from Quebec city center (73).

The effect of environmental pollution has
been also studied in several groups of traffic
policemen in Italy. Peluso et al. (74), using
personal monitors and analysis of DNA
adducts in WBCs by 32P-postlabeling, con-
ducted a study to determine B[a]P exposure.
Higher exposures to B[a]P and higher DNA
adduct levels in the police officers were
observed during the summer; no effect was
observed in the winter.

Another group of policemen was studied
by Bolognesi et al. (75). Exposure to 3.4
ng/m3 B[a]P did not increase SCEs in the
policemen compared to controls. In the same
group of policemen, no increase ofMN was
observed (76). Merlo et al. (77) investigated
the relationship between exposure to ambient
air PAHs and urinary excretion of 1-OH-
pyrene. With personal exposure higher than
3.67 ng/m3 B[a]P, urinary excretion of 1-OH-
pyrene was associated with cigarette smoking
more than with air PAH concentration.

The effect of exposure to automobile
exhaust was also studied in China by analyz-
ing MN and SCEs (78). Micronudei as well
as SCEs were significantly higher in traffic
policemen than in controls (p < 0.05). PAH
exposure was not determined.

Cole et al. (79) analyzed the impact of
exposure to crude oil after the wreck of an oil
tanker. An effect of genotoxic exposure on
the local population was followed by DNA
adduct analysis using 32P-postlabeling and an
analysis of HPRT mutations. No effect of
exposure was observed in this study.

Au et al. (80) studied residents exposed to
uranium mining waste. They found an
increase of CAs using a challenge assay (p <
0.05), which showed a significantly abnormal
DNA repair response due to exposure to
radioactive contaminants.
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Hartmann et al. (81) already showed that
exhaustive physical exercise caused significant
DNA damage as measured by the Comet
assay. Schiffl et al. (82) observed an
increased level of micronuclei in six volun-
teers running exhausting sprints, 24 and 48
hr after exercise (p < 0.01). These results
indicate that exhausting physical exercise
causes severe mutations at the chromosomal
level in blood lymphocytes.

Rural populations are sometimes greatly
exposed to arsenic via drinking water. In a
group in Mexico in which arsenic in drinking
water in exposed individuals was 408 pg/L
versus 30 pg/L in controls, significant
increases of CAs in lymphocytes and MN in
epithelial cells from oral mucosa and from
urothelial cells were found (83). In another
study from Finland with the almost the same
exposure to arsenic in drinking water (410
pg/L), an increased frequency of CAs was also
observed in the exposed group (84).

Several studies analyzed the effect of
active and passive (environmental tobacco
smoke [ETS]) smoking on various groups of
populations. Daube et al. (85) analyzed DNA
adducts in human placenta (8-OHdG) in
relation to tobacco smoke exposure. There
was no difference in placental levels of
8-OHdG between smokers and nonsmokers.
Vitamin E appears to have a protective effect
on placental 8-OHdG formation.

The determination of 8-OHdG in the
DNA of leukocytes from healthy donors was
used as a biomarker for oxidative DNA dam-
age (86). Surprisingly, smokers showed lower
mean 8-OHdG levels than nonsmokers. The
inverse relationship between smoking status
and 8-OHdG levels was explained by the
presence of an efficient repair process for the
oxidative damage induced by smoking. It was
concluded that 8-OHdG levels in leukocytes
may not prove to be a sensitive marker of
exposure to tobacco smoking.

An HPRT cell-cloning assay was used to
determine mutation frequency in fetal T-
lymphocytes exposed in utero to maternal
active and passive smoking. Exposure to
active and passive maternal cigarette smoking
did not result in a significant increase in
somatic mutation frequency in utero (87). In
a subsequent study, Finette et al. (88) char-
acterized gene mutations with deletions in
cord blood T-lymphocytes associated with
passive maternal exposure to tobacco smoke.
Analysis of 30 HPRT mutant isolates from
12 newborn infants born to mothers with no
evidence of environmental exposure to ciga-
rette smoke, and 37 HPRT mutant isolates
from 12 newborn infants born to mothers
exposed to passive cigarette smoke showed a
significant difference in the HPRT muta-
tional spectrum in those exposed in utero to
cigarette smoke. In particular, there was an

increase in "illegitimate" genomic deletions
mediated by V(D)J recombinase, a recombi-
nation event associated with hematopoetic
malignancy in early childhood.

The effect of exposure to ETS was ana-
lyzed in preschool children by evaluating coti-
nine in urine, 4-aminobiphenyl (4-ABP) and
PAH-protein adducts, and SCEs as biomark-
ers. ETS-exposed children had significantly
higher levels of cotinine, 4-ABP-hemoglobin
adducts, and PAH-albumin adducts (p <
0.05) than unexposed children (89).

Ammenheuser et al. (90) used the auto-
radiography mutant lymphocyte assay of
HPRT mutations to analyze differences
between smokers, former smokers, and non-
smokers. Smokers had a 4 times higher
HPRT mutant frequency than former smok-
ers or subjects who had never smoked (p <
0.05). This study demonstrated the sensitivity
of the autoradiography HPRT assay and indi-
cated that this assay is more likely to detect
the effects of recent rather than past exposure
to tobacco smoke. Dallinga et al. (91) ana-
lyzed 4-ABP-hemoglobin adducts and aro-
matic-DNA adducts in the lymphocytes of 55
smokers and 4 nonsmokers. The levels of
both adducts were related to the number of
cigarettes smoked per day.

The effect of smoking was also investi-
gated by Mooney et al. (92). They analyzed
PAH-DNA adducts by enzyme-linked
immunosorbent assay (ELISA). These
adducts were inversely correlated with
plasma levels of retinol, P-carotene, and a-
tocoferol. oc-Tocoferol had a significant pro-
tective effect on DNA adducts when
3-carotene levels were low. This result sug-
gests that several micronutrients may act in
concert to protect against DNA damage and
highlights the importance of assessing overall
antioxidant status to evaluate DNA damage
induced by various genotoxicants.

Using 32P-postlabeling for analysis of
DNA adducts in WBCs and alveolar
macrophages of smokers, Van Schooten et al.
(16) observed significant correlations
between the number of cigarettes smoked per
day and the level of aromatic DNA adducts
analyzed in lymphocytes. With higher expo-
sure levels, less efficient DNA adduct forma-
tion was observed. This led to a nonlinear
dose-response relationship.

Romano et al. (93) evaluated
PAH-DNA adducts in oral mucosa cells by
an immunohistochemical assay using a spe-
cific antiserum against B[a]P-DNA adducts.
They found that in smokers, PAH-DNA
adducts were significantly increased with the
number of cigarettes smoked per day (p <
0.05). Using nasal epithelium cells (94),
DNA adducts measured by a 32P-postlabel-
ing assay were significantly increased in
smokers compared with nonsmokers

(p < 0.001). This finding suggests that the
level of DNA adducts measured from biop-
sies of the nasal mucosa seems to be a reli-
able marker of exposure to cigarette
smoking. Using a monoclonal antibody for
4-ABP- and BPDE-DNA adducts in oral
mucosa and urothelial cells, smoking signifi-
cantly increased both DNA adducts in both
type of cells (95).

To evaluate SCEs and MN, Barale et al.
(96) organized a population study in 1,650
subjects of Italy. SCE was linearly correlated
with the number of cigarettes smoked per
day, but no increase in MN frequency was
observed (97). A similar effect of smoking
was observed in groups from Poland in men
environmentally exposed to ambient air pol-
lutants. Smoking was a major factor influenc-
ing the level of SCEs (13).

Using the Comet assay in a population
exposed to chronic low irradiation,
Wojewodzka et al. (98) observed no effect
of smoking habits even when using specific
endonucleases as an indicator of oxidative
damage. The effect of smoking was not seen
in either direct DNA strand breakage and
alkali-labile lesions or in enzyme oxidative
determinations.

Piperakis et al. (99) studied the effect of
smoking on hydrogen peroxide (H202)-
induced oxidative damage measured by the
Comet assay in peripheral lymphocytes.
Smoking significantly increased the response
of lymphocytes to H202, especially in males
20-25 years of age compared with non-
smokers (p < 0.001).

Surprisingly, of the 12 studies on the effect
of tobacco smoke on biomarkers of exposure
and effect, only 2 studies evaluated smoking
status using cotinine levels in plasma (16,91).

Amenheuser et al. (100) also analyzed the
frequencies of HPRT mutants in lympho-
cytes of marihuana-smoking mothers and
theirs newborns. The frequency of variant
lymphocytes in marihuana smokers was sig-
nificantly higher than in controls (p < 0.00 1).
Similarly, higher levels of HPRT mutations
were observed in newborns of mothers who
smoke marihuana than in newborns of non-
smokers (p < 0.05). The study indicates that
marihuana smokers may have an elevated risk
of cancer and that smoking marihuana while
pregnant may affect the fetus, resulting in a
high risk of birth defects or childhood cancer.

There are a limited number of studies on
the effect of genotype on biomarkers of expo-
sure and the effect on environmentally
exposed groups (Table 2).

Knudsen et al. (59) analyzed the effect of
GSTMI and NAT2 genotypes on the fre-
quency of CAs in bus drivers and postal
workers. Bus drivers with the GSTMI null
genotype and NAT2 slow acetylators had
increased frequencies of cells with CAs.
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Costa et al. (101) examined the
interaction of GSTMI and NAT2 genotypes
and personal exposure to carcinogenic
PAHs with urinary PAH metabolites and
DNA adducts in the WBCs of women
working in outside environments. Urinary
PAH metabolites increased for individuals
with NAT2 slow acetylators and the combi-
nation of GSTM1 null and NAT2 slow
acetylators.
A study of mothers from regions with

different annual average air pollution levels
of PM1o and PAHs in the Czech Republic
showed that higher DNA adduct levels were
detected in the group with a GSTMI null
genotype than in the group with a GSTM1
positive genotype (p = 0.018). This finding
was more pronounced among the residents
of the polluted district (65). Using multiple
regression analysis in the same cohort, DNA
adduct levels in placentas were also affected
by NA T2 genotype (66). Sram et al. (69)
analyzed the effect of GSTMI genotype on
Comet assay parameters in maternal venous
blood and cord blood. No effect of GSTMI
polymorphism was observed.

In a cohort of 70 mothers and newborns
from Poland, DNA adducts in maternal
WBCs were not related to CYPIAJ MspI or
GSTM1 polymorphisms, but DNA adducts
were significantly higher in newborns who
were heterozygous or homozygous for the
wild-type genotype of CYPIAJ MspI (70).
An investigation of the relationship between
PAH-DNA adduct levels and CYPIAI MspI
polymorphisms showed that placental
PAH-DNA adduct levels were also signifi-
cantly higher in newborns who were homo-
zygous or heterozygous for the wild-type of
CYPIAJ MspI (71,73).

The effect of CYPIAJ, GSTMI, and
GSTTI genotypes on urinary excretion of
1-OH-pyrene was analyzed in a group of traf-
fic policemen (77). No significant role was
detected for any metabolic polymorphisms.

4-ABP-hemoglobin adducts and aromatic
DNA adducts in smokers were analyzed rela-
tive to GSTMI and NA T2 polymorphisms.
No influence of GSTMI and NAT2 poly-
morphisms on hemoglobin adduct formation
was observed. Higher levels of DNA adducts
in lymphocytes were observed in NAT2 slow
acetylators than in intermediate acetylators
(p = 0.05) (91).

The effect of smoking was examined in
the study of 159 heavy smokers enrolled in a
smoking cessation program (92). Smokers
with CYPIA1 exon 7 valine polymorphisms
had significantly higher levels (p < 0.03) of
DNA adducts than those with no polymor-
phisms. There was no effect of GSTM1 or
interaction between CYPIAJ MspI and
GSTMI genotypes with respect to DNA
adduct levels.

Discussion
It is difficult to evaluate molecular epidemiology
studies, as some studies do not fulfill the well-
known paradigm of environmentally induced
cancer, beginning with a request for exposure
data (3). From the 47 studies presented in
Table 1 on the effect of exposure in occupa-
tionally exposed groups, data on personal
exposure were obtained for 22 studies (47%)
and data on ambient exposure in 3 studies
(14%). Personal monitoring was used to deter-
mine the exposure to PAHs, VOCs, benzene,
1,3-butadiene. and epichlorohydrine.

1-OH-pyrene appears to be an effective
biomarker of occupational exposure to PAHs
(9,10,20).
DNA adducts measured by 32P-post-

labeling were a sensitive biomarker of expo-
sure to PAHs in coke oven (6) and foundry
(14) workers but not in another study of coke
oven workers (9). This indicates the necessity
to use a standardized procedure for 32p-
postlabeling, as proposed for interlaboratory
trials by Phillips and Castegnaro (102). DNA
adducts were also a sensitive biomarker of
exposure to BD in the monomer production
unit (38) and to a pesticide mixture in
greenhouse floriculturists (45).

Protein adducts were determined as hemo-
globin or albumin adducts. In all three studies
that determined the effect of exposure to
PAHs in coke oven workers (11), to nitro-
PAHs in bus garage workers (21), or to
epichlorohydrin in factory workers (40), no
effects of exposure on these protein adducts
were observed.

The Comet assay was used in 11 studies.
Effects of exposure were observed with
VOCs (23), hydrocarbons (25), benzene
(27), with a mixture of pesticides in farmers
(42,43), cytostatics (51), anesthetic gases
(52), and tobacco dust (53). No effects were
observed with exposure to PAHs in coke
ovens (8), organic solvents (34), or BD
(37). Collins et al. (103) pointed out " . . .
its application to human biomonitoring was
realized very quickly and, perhaps prema-
turely . . . essential questions remain con-
cerning the reliability and reproducibility of
the assay." The Comet assay became a very
popular method during the last 6-8 years.
To be used properly, it needs international
standardization. There are discrepancies in
the time of isolation of cells, in the evalua-
tion of Comet parameters between com-
puter-based image analysis and visual
scoring, and in the statistical analysis of data.
Because strand breaks are quickly rejoined by
cellular processes, modification of the Comet
assay by including digestion with lesion-
specific endonucleases seems to be preferable
as the method of evaluating cellular DNA
repair (104). It is probably premature to use
the results of the Comet assay for risk

assessment, as the significance of the induced
changes is not well understood.

Cytogenetic analysis of chromosomal
aberrations in peripheral lymphocytes has
already been used for 35 years as a biomarker
of exposure to carcinogens. The significance
of CAs increased with the Nordic and Italian
studies (105,106) that showed the relation-
ship between their levels and the risk of
cancer. They were determined in 13 studies.
In 11 studies effects of exposure to PAHs in
coke ovens (7), hydrocarbons (25), benzene
(31,32), acrylonitrile together with dimethyl
formamide (35), BD (37,39), pesticides in
farmers (41), fluorides (47), cytostatics (49),
and cosmic radiation (54) were observed.
Only in two studies, greenhouse workers
exposed to pesticides (44) and crews exposed
to cosmic radiation (55), were no effects of
exposure found. Positive effects with exposure
to BD (39) and pesticides (41) were observed
using a challenge assay, indicating some
abnormalities in the DNA repair response.

SCEs were analyzed in 13 studies.
Relationships to exposure were observed
with PAHs (7,13,18,19), acrylonitrile with
dimethyl formamide (35), styrene (36), BD
(37), epichlorohydrin (40), and Cr and Ni
(48). No effects were found with exposure
to VOCs (23), hydrocarbons (25), or
benzene (22,28).
MN were determined in 16 studies.

Effects of exposure were observed with PAHs
(18,19), benzene (28), epichlorohydrin (40),
pesticides (44), fluorides (47), cytostatics
(50), and cosmic radiation (54). No effects
were induced by VOCs (23,24), benzene
(26,33), styrene (36), BD (37), malathion
(46), or cosmic radiation (55).

In comparing the sensitivities of CAs,
SCEs, and MN, it appears that CAs and SCEs
are more sensitive biomarkers than MN.

Other biomarkers of effect were used only
infrequently: HPRT was determined in 3
studies, but no effects of exposure to PAHs
(12), epichlorohydrin (40) or cosmic radia-
tion (55) were observed. The induction of
p53 protein levels was affected by PAHs in
coke oven workers (9), but no effect of
VOCs on p21 protein levels in airport per-
sonnel was observed (23).

As biomarkers of susceptibility, the
genotypes CYPIAJ, CYP2E1, GSTMI,
GSTT1, NAT2, and PONwere determined.
DNA adducts (9) and 1-OH-pyrene (10) by
CYPJAJ polymorphism were increased with
exposure to PAHs in coke oven workers.
Genetic polymorphisms of CYP2E1, GSTM1,
and PONaffected the frequency of CAs using
a challenge assay (41). No effects of GSTM1,
NAT2, and/or CYPJAJ were observed with
exposure to PAHs in coke ovens (6-14) and
oil well fires (20), to organic solvents (34) or
to pesticides (44,56).
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Conclusions are unexpected: the impact
of occupational exposure to mutagens and
carcinogens on the level of biomarkers of
exposure and effect is not significantly influ-
enced by the genetic polymorphisms that
until now have been used in these studies.
These results of the effect of genotypes in
groups highly exposed to PAHs correspond to
those of Vineis and Martone (107) who sug-
gest that the effect of genotype is more pro-
nounced at low doses and that individual
susceptibility is irrelevant under exceptionally
high exposure conditions.

In many cases, studies on environmental
exposure to mutagens and carcinogens lack
data on exposure. It is sometimes difficult to
relate the observed effects only to air pollu-
tion if information on ambient exposure and
life style are not fully presented (108). For
example, Vyskocil et al. (64) did not observe
any relationship between pyrene levels in air
and 1-OH-pyrene levels in urine. Therefore,
they concluded that PAHs in food probably
contribute to masking the influence of air
pollution on urinary 1-OH-pyrene. Yet no
information about diet was included in this
study, which could lead to the misinterpreta-
tion that human exposure to PAHs is
predominantly from dietary sources (109).

The effects of exposure and genotypes on
biomarkers of exposure and effect by environ-
mentally exposed populations were analyzed
in 41 studies. Data on personal exposure were
collected in 9 studies (22%) and on ambient
exposure in 5 studies (13%).

1-OH-pyrene levels were determined to
be biomarker of exposure to PAHs, in 4
studies (57,63,64,77). No effects of exposure
to PAHs in ambient air on 1-OH-pyrene lev-
els in urine were observed for exposure to
PAHs in ambient air. According to these
results, 1-OH-pyrene is not a very sensitive
biomarker of environmental exposure to
PAHs. Our conclusion contradicts the recent
evaluation by Dor et al. (110), who claimed
that 1-OH-pyrene is the most relevant bio-
marker for estimating individual exposure to
environmental pollution.

The only positive results were those by
Costa et al. (101); they determined a total of
28 PAH/metabolites in urine including the
following parent PAHs and their hydroxylated
metabolites: anthracene, B[a]P, chrysene,
pyrene, methylchrysene, and methyl B[a]P.
DNA adducts were determined in 18

studies. The 32P-postlabeling method was
used in 7 studies. DNA adducts were related
to PAH exposure in bus drivers (57), in pla-
centas (65,66), in traffic policemen (74),
and in smokers (16,91). Two studies found
no effect of PAH exposure on DNA adduct
levels (79,101). Immunologic methods such
as competitive ELISA or immunohistochem-
istry use polyclonal and monoclonal

antibodies to recognize PAH-DNA adducts
(111). These methods were used in 8
studies. DNA adducts were increased in
maternal venous and cord blood (70) and in
smokers (91-93,95). No effect was seen for
PAH exposure in placenta (71) or for
tobacco smoke exposure in placentas (85)
and smokers (86).

It is difficult to compare the 32p-
postlabeling and immunologic methods.
Until now, immunologic methods were not
internationally validated in the same way as
the 32P-postlabeling method (102).
According to Santella (111)

... the data generated by immunological
methods may not be as absolutely quanti-
tative as that obtained in other types of
assay, the DNA adduct levels found in dif-
ferent populations provide important
information on exposure monitoring ....

Oxidative damage was measured in 5
studies. 8-oxodG in urine was determined
in bus drivers (57,60). One study found a
negative association (57), another a positive
one (60). Both results are from the same
group, but it is difficult to compare the
groups because Autrup et al. (57) expressed
their results in nmol/mmol creatinine and
Loft et al. (60) in pmol/kg 24 hr. 8-OHdG
(using an immunohistochemical method)
increased in children exposed to ozone (61);
no effect of tobacco smoke was observed in
placentas, using 32P-postlabeling to deter-
mine 8-OHdG (85) or in leukocytes of
smokers using high performance liquid
chromatography detection (86).

Methods analyzing 8-oxodG and
8-OHdG were criticized because of various
factors that artifactually induce oxidative
DNA lesions during DNA extraction
(112,113). Using an improved chaotropic
NaI method, Helbock et al. (114) found that
the steady-state level of 8-oxodG may be sig-
nificantly reduced. Nakamura et al. (115),
isolating DNA from cells with 2,2,6,6-
tetramethylpiperidinoxyl minimized the arti-
factual induction of oxidative lesions during
DNA extraction. Oxidative damage is under-
stood to be an important injury of DNA. It is
important to organize interlaboratory trials to
determine methods that could be standard-
ized for human monitoring.

Protein adducts were increased as PAH-
albumin adducts in bus drivers (57) and
children exposed to ETS (89), as 4-ABP-
hemoglobin adducts in children exposed to
ETS (89) and in smokers (91). No effect of
PAH exposure was detected when
BPDE-hemoglobin adducts were measured
(63).

The Comet assay was used in 5 studies.
An effect of exposure was observed with
increased ozone exposure (61,62) and using

in vitro H202-induced oxidative damage in
young smokers (99). No effects of PM1o
(69) or tobacco smoke (98) were observed in
two studies.

Chromosomal aberrations were deter-
mined in 5 studies. The frequency of CAs
was increased in studies analyzing the effect
of high arsenic levels in drinking water
(83,84) and of uranium mining waste in resi-
dents using a challenge assay (80). No
increase was related to PAH exposure in bus
drivers (59) or mothers and newborns (66).

SCE were determined in 5 studies. Effects
were observed for automobile exhaust (78)
and tobacco smoke (13,97); no effects of
PAH exposure were seen in policemen (75)
or in children exposed to ETS (89).
MN were determined in 4 studies. Their

frequency was increased in policemen (78),
by exposure to arsenic in drinking water (83)
and by physical exercise (82); no effects were
seen in another group of policemen (75).

HPRT mutations were followed in 5
studies. The mutation spectrum was changed
in newborns exposed to ETS (88); the muta-
tion frequency was increased in tobacco
smokers (90) as well as in marihuana smokers
(100) and their newborns. No effect was seen
in a population exposed to spilled crude oil
(79) or in newborns exposed to ETS (87).

Comparing all cytogenetic end points,
there were no significant differences in their
sensitivities to environmental exposure.

Biomarkers of susceptibility were deter-
mined in 10 of a total 41 studies as genotypes
of CYPJAJ, GSTMI, GSTTI, and NAT2.

CYPlAI affected DNA adducts in new-
borns (70) and placentas (71) of residents of
an air-polluted region; no effect was observed
on 1-OH-pyrene in the urine of policemen
exposed to air pollution (77) or smokers (92)
or on DNA adducts in smokers (92).

A GSTMI null genotype increased the
frequency of CAs in bus drivers exposed to
PAHs (59), DNA adducts in the placentas of
mothers exposed to PAHs (65), and the con-
centration of PAH metabolites in urine from
ambient air exposure to PAHs (101). No
effect was seen in mothers or newborns on
Comet parameters (69) and DNA adducts
(70), in policemen on 1-OH-pyrene in urine
(as well as GSTT1) (77), or in smokers on
DNA (91,92) and protein (91) adducts.

The NAT2 slow acetylator genotype also
affected the frequency of CAs in bus drivers
(59), DNA adducts in placentas (66), and
the concentration of PAH metabolites in
urine (101). No effect was observed on the
level of DNA and protein adducts in
smokers (91).

In summary, the effects of different geno-
types appear to vary in different populations
because of the level of exposure to pollutants
as well as the spectrum of biomarkers used.
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Conclusion
Evaluating the achievements of molecular
epidemiology during the period 1997-1999
probably reveals only the tip of the iceberg, as
the published papers presented the results of
studies mostly from the early nineties. This
also means that some studies, especially those
analyzing the effects of genetic polymor-
phisms, were sometimes based on small
sample sizes.

Several requirements for human studies in
the future must be stressed. Using various
biomarkers, the studies should be related to
ambient and personal monitoring, and
should also provide information about
lifestyles. When the effect of smoking is ana-
lyzed, determining cotinine levels should be
one of the basic requirements. Many studies
were deficient in experimental design, using
only exceptionally coded samples (blinded)
and repeating the analysis of a subset of the
samples that had been recorded.
DNA adducts measured by a 32p

postlabeling method have become the most
popular of biomarkers of exposure (102).
They are probably the biomarker of choice
for evaluating PAH exposure (116-119).

Protein adducts are useful as a biomarker
for exposure to tobacco smoke (4-ABP) or
exposure to smaller carcinogenic molecules
such as, e.g., acrylonitrile, BD, or epichloro-
hydrine (17).

Use of the Comet assay still needs reliable
validation for human biomonitoring
(103,104), as at present, it appears that its
use for monitoring human exposure to envi-
ronmental pollutants is not fully validated.

Methods analyzing oxidative DNA lesions
by GC-MS or HPLC also need reliable stan-
dardization and international validation.

Of the biomarkers of effect, the most
common are cytogenetic end points. An
analysis of Nordic and Italian cohorts sug-
gests that the significance of chromosomal
aberrations in peripheral lymphocytes has
increased, indicating a predictive value of
chromosomal aberration frequency for
cancer risk (105). Findings from these epi-
demiologic studies support the use of chro-
mosomal breakage as a relevant biomarker of
cancer risk (106).

The impact of genetic polymorphisms as
biomarkers of susceptibility is of key signifi-
cance in understanding the processes of
genetic damage involved in mutagenesis and
carcinogenesis. Until now, there have not
been sufficient data to interpret the relation-
ship between genotypes, biomarkers of expo-
sure, and biomarkers of effect related to risk
assessment of human exposure to mutagens
and carcinogens. It is possible that this
process will progress rapidly with the
Environmental Genome Project (120).
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